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2 Theory Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700064, India

Received: 17 May 2007 / Revised version: 28 August 2007 /
Published online: 9 November 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. We investigate a Lie algebra-type κ-deformed Minkowski spacetime with undeformed Lorentz
algebra and mutually commutative vector-like Dirac derivatives. There are infinitely many realizations of
κ-Minkowski space. The coproduct and the star product corresponding to each of them are found. An ex-
plicit connection between realizations and orderings is established and the relation between the coproduct
and the star product, provided through an exponential map, is proved. Utilizing the properties of the natural
realization, we construct a scalar field theory on κ-deformed Minkowski space and show that it is equivalent
to the scalar, nonlocal, relativistically invariant field theory on the ordinary Minkowski space. This result is
universal and does not depend on the realizations, i.e. the orderings, used.

1 Introduction

One of the problems whose solution is still being sought
involves how gravity and quantum field theory can be rec-
onciled. The efforts to bring these two theories closer have
resulted in many new developments in theoretical physics
and mathematics. In this regard, noncommutative geom-
etry appears as a promising framework for unifying gravity
and quantum field theory. In order to accommodate for
quantum aspects of spacetime, spacetime noncommutativ-
ity has been studied extensively [1–13] and two main di-
rections in the investigation have focused on the canonical
noncommutative spacetime and κ-Minkowski noncommu-
tative spacetime [14–46], respectively.
To describe the short-distance (Planck scale) structure

of spacetime, it might appear to be necessary to mod-
ify the existing symmetries. Specifically, one might require
some deformation of the Poincaré symmetry and some
arguments would suggest that the symmetries of the κ-
deformed Minkowski space should be described in terms
of a Hopf algebra [15, 17]. For these reasons, it is of im-
portance to classify noncommutative (NC) spaces and to
investigate their properties. In order to make a step for-
ward in this direction, we analyze a κ-deformedMinkowski
space, which is a simple example of a Lie algebra-type NC
space [47].
Recently, a new motivation for studying κ-deformed

spacetime has appeared within the programme of the so-
called doubly special relativity (DSR) [23–26], which is
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a special relativity theory extended to include a second
invariant parameter κ, a parameter of mass dimension, be-
sides the velocity of light. Also, κ-Minkowski space serves
as a playground for constructing a field theory on it and
then discussing its physical properties. The attempts of
this type have been undertaken by many authors [14–46].
In κ-deformed Minkowski space, the noncommutativ-

ity of coordinates depends on the deformation parame-
ter a = 1

κ
. Generally, this parameter can be considered as

an arbitrary vector a in Minkowski space with all com-
ponents different from zero. In [34, 35], the most general
deformation of the Euclidean space with the vector a in an
arbitrary direction has been discussed. In the present pa-
per we restrict ourselves to the case where only the time
component of the vector a is different from zero. The di-
mensional parameter a = 1

κ
has a very small value, which

yields the undeformed Minkowski space in the limit a→ 0.
The NC coordinates and the generators of rotations form
an extended Lie algebra. The subalgebra that includes the
rotation generators is the ordinary undeformed Lorentz
algebra SOa(1, n− 1). We assume that Dirac derivatives
mutually commute and transform as a vector representa-
tion of the Lorentz algebra. An infinite number of realiza-
tions [34, 35] of κ-deformed Minkowski space is found in
terms of commutative coordinates and derivatives. These
realizations are parametrized by arbitrary invertible func-
tions, with suitably imposed conditions leading to the un-
deformed Minkowski space in the limit a→ 0. Each such
realization induces an ordering prescription, a coproduct
and a star product associated to it. For a special choice
of the parameter functions, some particularly simple real-
izations are obtained whose corresponding star products
are known in the literature [34]. The choice of the particu-
lar realization in a way corresponds to a particular choice
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of gauge, so although κ-Minkowski space may be realized
in many different ways, physical results do not depend on
concrete realization, i.e. ordering, as long as all commu-
tators between NC coordinates and the Dirac derivatives
are fixed. In the analysis of κ-Minkowski spaces we use
the methods developed for deformed single and multimode
oscillators in the Fock space representations [48–60]. In
particular, we use the methods for constructing deformed
creation and annihilation operators in terms of ordinary
bosonic multimode oscillators. Also, we employ the con-
struction of transition number operators and, in general, of
the generators proposed in [50–53, 56].
The crucial point emphasized in this paper is that NC

spaces, particularly the κ-deformed Minkowski space con-
sidered here, can be realized in many ways in terms of
commutative variables and all these realizations are on an
equal footing with physical results not depending on the
particular realization taken. For fixed deformed Heisen-
berg algebra, there is a one-to-one correspondence between
the realization of NC space and the ordering prescription
and for each such realization there exists a coproduct and
a particular star product corresponding to it. In a recent
paper [42] it was shown that a free scalar field theory on
κ-deformed Minkowski space can be expressed as a nonlo-
cal, relativistically invariant field theory on the ordinary
Minkowski space. The authors of [42] defined a special
star product by using, from the very beginning, a par-
ticular “right” ordering prescription. In the present paper
we also construct a free scalar field theory on κ-deformed
Minkowski space in terms of a particularly chosen star
product, namely the star product corresponding to the
natural realization, where the Dirac derivative is identified
with the ordinary derivative.We show that the correspond-
ing free scalar field theory on Minkowski space is partic-
ularly simple, nonlocal, relativistically invariant and does
not depend on the realization/ordering taken, i.e. does not
depend on the particular realization of 4-momenta and co-
ordinates defining the related NC space.
This paper is arranged as follows. In Sect. 2.1 we review

the results of [34], which are important for the investiga-
tions carried out in this paper, including the notions of
κ-deformed Euclidean space, its realizations in terms of
commutative coordinates, and the realizations of the unde-
formed rotation algebra SOa(n) compatible with κ defor-
mation. All these realizations are introduced in such a way
as to retain the structure of the extended Lie algebra. They
describe the Lie algebra-type deformation of space where
the rotation algebra is undeformed, while the correspond-
ing coalgebra is deformed. The Dirac derivative and the
invariant Klein–Gordon operator, together with their re-
alizations, are also introduced in this section. In Sect. 2.3
we exhibit the one-to-one correspondence between the or-
dering prescription and the type of mapping between the
NC κ-deformed space and the ordinary undeformed space.
Here we also give the general BCH formula for the Lie alge-
bra corresponding to the κ type of deformation of space. In
Sect. 2.4 the notions of the T -operator and a star product
are introduced. Knowing the star product in a given real-
ization, the T -operator can be used to make a transition
to another, equivalent star product. This new star prod-

uct corresponds to a realization that is related to the first
one through a similarity transformation by the T -operator.
In Sect. 3, a derivation of the star product formula corres-
ponding to the ϕ realization, introduced in Sect. 2.1, is pre-
sented. The final result is identified with an important rela-
tion between the coproduct and the star product in terms
of an exponential map for a given realization. This result
can be extended to hold for a general Lie algebra. In Sect. 4
all results obtained are continued to the Minkowski space
with suitable modifications required to accommodate for
a change in the signature. Here we introduce a particularly
interesting realization, the so-called natural realization,
discuss its properties and derive the star product corres-
ponding to it. We then use this result to construct the free
scalar field theory on the κ-deformed Minkowski space and
to show that it reduces to free, nonlocal scalar field theory
on the ordinary Minkowski spacetime, no matter which re-
alization of the deformed space is used. In constructing the
field theory on κ-deformed Minkowski space, the emphasis
is on the star product corresponding to the natural realiza-
tion because it is the only one with this preferable property.
After a short summary, we present Appendices A and B,
referring mainly to the derivation of the star product oc-
curring in Sect. 3.

2 Algebra of κ-deformed Euclidean space

2.1 The mapping between commutative
and noncommutative coordinates

We consider a noncommutative (NC) space [34] with coor-
dinates x̂1, x̂2, . . . , x̂n, satisfying the following Lie algebra-
type relations:

[x̂µ, x̂ν ] = iCµνλx̂λ = i(aµx̂ν −aνx̂µ) , (1)

where a1, a2, . . . , an are constant real parameters describ-
ing a deformation of Euclidean space. The structure con-
stants are

Cµνλ = aµδνλ−aνδµλ . (2)

We choose a1 = a2 = · · ·= an−1 = 0, an = a and use Latin
indices for the subspace (1, 2, . . . , n−1) and Greek indices
for the whole space (1, 2, . . . , n). Then the algebra of the
NC coordinates becomes

[x̂i, x̂j ] = 0 , [x̂n, x̂i] = iax̂i , i, j = 1, 2, . . . , n−1 . (3)

There exist realizations of the NC coordinates x̂µ in terms
of ordinary commutative coordinates x1, x2, . . . , xn and
their derivatives ∂1, ∂2, . . . , ∂n, where ∂µ =

∂
∂xµ
. A realiza-

tion of the NC coordinates x̂µ satisfying the algebra (3) is

x̂i = xiϕ(A) ,

x̂n = xnψ(A)+ iaxk∂kγ(A) , (4)

where A = ia∂n and the summation over repeated indices
is understood. It is assumed that ϕ and ψ are positive func-
tions obeying the conditions

ϕ(0) = 1 , ψ(0) = 1 . (5)
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The function γ satisfy

ϕ′

ϕ
ψ = γ−1 , (6)

where ϕ′ = dϕ/dA. It is understood that the quantity
γ(0) =ϕ′(0)+1 is finite. In the following discussion we take
the vacuum state to be represented by 1, i.e. |0〉 ≡ 1, so that
it is annihilated by all derivatives ∂µ.
Next we introduce the generators Mµν , Mµν =−Mνµ

satisfying the ordinary undeformed SOa(n) algebra

[Mµν ,Mλρ] = δνλMµρ− δµλMνρ− δνρMµλ+ δµρMνλ ,
(7)

or, in a more practical form,

[Mij ,Mjn] =Min ,

[Min,Mjn] =−Mij . (8)

If we want to extend the algebra to include the action of the
generalized rotation generatorsMµν on NC coordinates in
such a way as to keep the Lie algebra structure, then we are
brought to the unique commutation relations [29, 34]

[Min, x̂n] = x̂i+ iaMin , (9)

[Min, x̂j ] =−δij x̂n+ iaMij , (10)

that, together with (3) and (7), satisfy the Jacobi identities

[Mαβ , [x̂µ, x̂ν ]]+ [x̂µ, [x̂ν ,Mαβ]]+ [x̂ν , [Mαβ, x̂µ]] = 0,

[Mαβ , [Mγδ, x̂µ]]+ [Mγδ, [x̂µ,Mαβ ]]+ [x̂µ, [Mαβ ,Mγδ]] = 0.

These are the necessary and sufficient conditions for the
consistency of the extended Lie algebra with generators x̂λ
andMµν . It may be noted that (9) and (10) have a smooth
limit [Mµν , xλ] = xµδνλ−xνδµλ, when aµ→ 0. There are
infinitely many representations ofMµν in terms of commu-
tative coordinates xλ and their derivatives ∂λ. If we require
the generatorsMµν to be linear in x with an infinite series
in ∂, then there emerge two families of solutions consistent
simultaneously with (8)–(10). One family is for ψ = 1 and
the other one is for ψ = 1+2A. Here we focus our attention
only on the first family, which gives us solutions of the form

Mij = xi∂j−xj∂i ,

Min = xi∂nϕ
e2A−1

2A
−xn∂i

1

ϕ
+ iaxi∆

1

2ϕ
− iaxk∂k∂i

γ

ϕ
,

Mni =−Min , (11)

where ∆ = ∂k∂k, γ =
ϕ′

ϕ
+1 and the summation over re-

peated indices is understood. This realization can be
parametrized by an arbitrary positive function ϕ(A),
ϕ(0) = 1. To complete the settings we are dealing with, it
is natural to introduce the Dirac derivatives Dµ and the
invariant operator� by

[Mµν , Dλ] = δνλDµ− δµλDν ,

[Dµ, Dν ] = 0 , [Mµν ,�] = 0 , [�, x̂µ] = 2Dµ .
(12)

Realizations of the above operators in terms of the commu-
tative variables have the form

Di = ∂i
e−A

ϕ
,

Dn = ∂n
sinhA

A
+ ia∆

e−A

2ϕ2
, (13)

�=∆e
−A

ϕ2
−∂2n

2[1− coshA]

A2
. (14)

Similar expressions forMµν andDλ, as given in (11)–(14),
have been obtained in [29, 31], but only for three particu-
lar choices of the function ϕ, namely ϕ = 1, ϕ = e−A and
ϕ= A

eA−1
. Now we calculate the commutation relations be-

tween the NC coordinates x̂µ and the Dirac derivativesDν :

[Di, x̂j ] = δij
(
− iaDn+

√
1−a2DµDµ

)
,

[Di, x̂n] = 0 ,

[Dn, x̂i] = iaDi ,

[Dn, x̂n] =
√
1−a2DµDµ . (15)

These relations are fixed by all previous commutation re-
lations (3), (8)–(10) and (12) and they involve only the
deformation parameter a.

2.2 Leibniz rules and the coproducts

An important ingredient of the symmetry structure of κ-
deformed space are the Leibniz rules of generators of rota-
tions and derivatives. For the case under consideration, the
Leibniz rule for the rotation generators looks like

Mij(f̂ · ĝ) = (Mij f̂) · ĝ+ f̂ · (Mij ĝ) ,

Min(f̂ · ĝ) = (Minf̂) · ĝ+(e
Af̂) · (Minĝ)

+ ia

(
∂j
1

ϕ(A)
f̂

)
· (Mij ĝ) ,

where f̂ , ĝ are functions of the NC coordinates x̂µ. Simi-
larly, we have the expressions

Dn(f̂ · ĝ) = (Dnf̂) · (e
−Aĝ)

+

(
iaDn+

√
1−a2DµDµ

1−a2DkDk
f̂

)
· (Dnĝ)

+

(
iaDi

iaDn+
√
1−a2DµDµ

1−a2DkDk
f̂

)
· (Diĝ) ,

Di(f̂ · ĝ) = (Dif̂) · (e
−Aĝ)+ f̂ · (Diĝ) ,

as the Leibniz rules for the Dirac derivative.
The above equations for the Leibniz rules comprise the

notion of coproducts. In the case of the rotation generators,
the coproduct looks like

�Mij =Mij⊗1+1⊗Mij ,

�Min =Min⊗1+e
A⊗Min+ iaDje

A⊗Mij ,
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while, in the case of the Dirac derivative, it is given by

�Dn =Dn⊗
(
− iaDn+

√
1−a2DµDµ

)

+
iaDn+

√
1−a2DµDµ

1−a2DkDk
⊗Dn

+ iaDi
iaDn+

√
1−a2DµDµ

1−a2DkDk
⊗Di ,

�Di =Di⊗
(
− iaDn+

√
1−a2DµDµ

)
+1⊗Di ,

(16)

where eA is defined as

e−A =−iaDn+
√
1−a2DµDµ .

The final result for the coproduct depends only on aDn
and a2DµDµ. In the limit a→ 0, it gives the ordinary un-
deformed coproduct for Mµν , i.e. Dµ, respectively. The
notion of the coproduct leads to the observation that the
generators of the κ-deformed symmetry are elements of
a Hopf algebra. The coproduct �, which we have deter-
mined for Mµν and Dµ, extends multiplicatively to the
whole algebra ISOa(n), which becomes a Hopf algebra in
this way. Some examples of the Poincaré invariant interpre-
tation of NC spaces and of the twisted Poincaré coalgebra
were also considered in [61–63].
We note that from (4) it follows that

[∂i, x̂j ] = δijϕ(A) ; [∂i, x̂n] = ia∂iγ(A) ,

[∂n, x̂i] = 0 ; [∂n, x̂n] = 1 . (17)

The corresponding coproducts�ϕ are

�ϕ(∂n) = ∂n⊗1+1⊗∂n= ∂
x
n+∂

y
n ,

�ϕ(∂i) = ∂
x
i

ϕ(Ax+Ay)

ϕ(Ax)
+∂yi

ϕ(Ax+Ay)

ϕ(Ay)
eAx , (18)

where Ax = ia∂
x
n and similarly for Ay . They are consis-

tent with (16) and (13). At this point it is convenient to
introduce a notion of natural realization, namely the ϕ
realizations (4) are natural with respect to (17). The natu-
ral realization is generally characterized by the reqirement
Dµ ≡ ∂µ.
Particularly, for the deformed Heisenberg algebra (15),

which is fixed in the case of the extended Lie algebra intro-
duced in Sect. 2.1, the natural realization is given by

x̂Natµ = xµ
√
1−a2∂2− iCαµν∂α , (19)

with Cαµν∂α = aαδµν −aµδαν .

2.3 The correspondence of mapping and ordering

In this section we want to establish the relation between
different realizations of NC space and different ordering
prescriptions. In other words, we want to make clear that
for each mapping of the form (4) there exists an accom-
panying ordering prescription. In the previous section we
have introduced the natural realization, which is seen not

to belong to the family (4). For this type of realization
of NC space there also exists one particular ordering pre-
scription. In this section we shall establish the general form
of the orderings corresponding to the family of realiza-
tions (4), while in Sect. 4.2, we shall deduce the form of the
ordering prescription that belongs to the natural realiza-
tion. To begin with, let us define the “vacuum” state

|0〉= 1 , Dµ|0〉= ∂µ|0〉= 0 , (20)

then for a given realization of NC space, described by ϕ(A),
there is a unique mapping from the set of fields f(x) of the
commutative coordinates xµ to the set of fields f̂(x̂µ) of the
NC coordinates x̂µ. This mappingΩϕ can be characterized
as

Ω−1ϕ : f̂(x̂)−→ fϕ(x) , (21)

such that f̂(x̂ϕ)|0〉 = fϕ(x). The fields or functions on
NC space are conveniently introduced through the Fourier
transform

f̂(x̂) =

∫
dnxf̃ϕ(k) : e

ikαx̂α :ϕ , (22)

where : :ϕ denotes the ordering that corresponds to the re-
alization (4) of NC space, parametrized by the function
ϕ. The way in which this correspondence is realized will
be made clear from the following consideration. Thus, to
make a connection between the particular realization of
NC space and the corresponding ordering prescription, we
impose the requirement on the ordered exponentials

: eik·x̂ϕ :ϕ |0〉= e
ik·x , (23)

appearing in the expansion (22). For example, we have the
following expressions for the left, right and symmetric or-
dering prescriptions, respectively:

: eikαx̂α :L ≡ e
iknx̂neikix̂i = eiknx̂n+ikix̂iϕS(−akn)e

−akn
,

: eikαx̂α :R ≡ e
ikix̂ieiknx̂n = eiknx̂n+ikix̂iϕS(−akn) ,

: eikαx̂α :S = e
ikαx̂α . (24)

In the above relations we have introduced the function

ϕS(A) =
A

eA−1
, (25)

where A = ia∂n ≡ −akn. Let us first consider the left
ordered Fourier exponential. What we here are interested
in is to find the realization (4) for which this left ordered
exponential will satisfy the requirement (23). Because all
realizations are of the form (4), this basically reduces to the
problem of finding the correct function ϕ. It can be easily
shown that for the left ordering this function is ϕ = e−A.
By taking the same reasoning for the right ordered Fourier
exponential, we end up with the function ϕ= 1 as the one
that defines the mapping (4) for which the right ordered
exponential satisfies the requirement (23). In exactly the
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same way, the symmetric ordering is specified by the func-
tion ϕ = ϕS. There is also a family of ordering prescrip-
tions, interpolating between left and right, namely,

: eikαx̂α :C = e
iλknx̂neikix̂iei(1−λ)knx̂n , (26)

which corresponds to the realization characterized by the
function ϕ = e−λA. For λ= 1

2 , this ordering prescription
coincides with the one used in [39–41]. Generally, for the
ordering prescription corresponding to the general map-
ping (4) with the function ϕ, we have

: eikαx̂α :ϕ= e
iknx̂n+ikix̂i

ϕS(−akn)
ϕ(−akn) . (27)

It is clear that (27) incorporates all special cases (24)
for the left, right and symmetric ordering, as well for the
case (26), respectively.
Thus, the above consideration has shown that for each

mapping, here specified by the function ϕ, there exists
a particular basis : eik·x̂ϕ :ϕ of the ordered Fourier exponen-
tials. That is, for each mapping there is a particular order-
ing prescription with the mutual correspondence between
these two notions provided through the requirement (23).
The aforementioned correspondence can be looked upon
from a slightly different point of view. In respect to this,
one can consider a more general form of (23), namely,

: eik·x̂ϕ :χ |0〉= e
iKχϕ(k)·x , (28)

where Kχϕ(k) is the function defined in (54), having the
momentum k as an argument. In this expression, one can
change realization of NC space as well as ordering prescrip-
tion simply by changing the functions ϕ and χ, respec-
tively. By doing this, the requirement (23) will be fulfilled
only after the changes in realization and ordering meet
each other, i.e. it will be satisfied only when ϕ= χ.
Equation (27) can be deduced from the BCH formula

for the κ-deformed Lie algebra-type of NC space,

eikαx̂αeiqαx̂α = eiDα(k,q)x̂α , (29)

where

Di(k, q) = ki
ϕS(−akn−aqn)

ϕS(−akn)
+ qi
ϕS(−akn−aqn)

ϕS(−aqn)
e−akn ,

Dn(k, q) = kn+ qn , (30)

and from the defining relation for the generalized momen-
tum addition rule k⊕ q, which reads

: eikαx̂α :ϕ : e
iqαx̂α :ϕ=: e

i(k⊕q)αx̂α :ϕ . (31)

Inserting (27) into (31) and using (29) and (30), we get

(k⊕ q)i = ki
ϕ(−akn−aqn)

ϕ(−akn)
+ qi
ϕ(−akn−aqn)

ϕ(−aqn)
e−akn ,

(k⊕ q)n = kn+ qn . (32)

We see that the generalized momentum addition rule (32)
is fully in agreement with the coproduct�ϕ(∂µ), obtained
in the previous section, (18). To be precise, if we set
k =−i∂1, q =−i∂2, then (18) and (32) can be related as
�ϕ(∂) = ∂1⊕∂2.

2.4 T -operator

Now we introduce a star product in a given ϕ realization in
the following way. As in the previous section, we define the
“vacuum” state as

|0〉= 1 , Dµ|0〉= ∂µ|0〉= 0 . (33)

and introduce the unique map Ωϕ, that, for a given real-
ization described by ϕ(A), maps the commutative algebra
of functions f(x) into the noncommutative algebra of func-
tions f̂(x̂µ). The map Ωϕ can be uniquely characterized
by

Ωϕ : f(x)−→ f̂(x̂ϕ) , (34)

such that f̂(x̂ϕ)|0〉 = f(x). If we now have two functions
f̂(x̂) and ĝ(x̂) of NC coordinates, make their product f̂(x̂) ·
ĝ(x̂) and ask which function of commutative coordinates
this combination belongs to (through the mappingΩϕ), we
arrive at

(f 
ϕ g)(x) = f̂(x̂ϕ)ĝ(x̂ϕ)|0〉= f̂(x̂ϕ)g(x) . (35)

By this expression the star product in a given ϕ realization
is defined. This product obviously depends on the realiza-
tion ϕ. Generally, the star products belonging to two differ-
ent realizations ϕ1 and ϕ2 can be related to each other by
the so-called T -operator that identifies a class of equivalent
star products. Thus, the T -operator can be characterized
by (see for example [31])

T (f(x)
ϕ1g(x)) = T (f(x))
ϕ2T (g(x)) . (36)

In [31] T -operator has been obtained by relating the cases
for ϕ= e−A and ϕ= 1 to that for ϕ= A

eA−1
, corresponding

to left, right and symmetric ordering, respectively. To de-
duce its explicit form for the case of κ-deformed spaces, we
take advantage of the following identities:

xi 
ϕ f(x) = (x̂ϕ)if(x) = xiϕ(A)f(x) ,

xn 
ϕ f(x) = (x̂ϕ)nf(x) = [xn+ iaxk∂kγ(A)]f(x) ,
(37)

together with the obvious property T (xi) = xi and T (xn) =
xn. We can now proceed as follows:

T (xi
ϕ1f(x)) = T (xi)
ϕ2T (f(x)) . (38)

By using (37), we have

T (xiϕ1(A)f(x)) = xiϕ2(A)T (f(x)) , (39)

implying
(
xiT +

∂T

∂∂i

)
ϕ1(A)f(x) = xiϕ2(A)Tf(x) . (40)

Since (40) holds for any function f(x), it reduces to

xi(ϕ1(A)−ϕ2(A))T =−
∂T

∂∂i
ϕ1(A) , (41)
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which integrates to

T = lim
y→x
e
xi∂

y
i

(
ϕ2(A)
ϕ1(A)

−1
)
≡: e

xi∂i

(
ϕ2(A)
ϕ1(A)

−1
)
: , (42)

where the symbol : : has the meaning of the usual normal
ordering with the variables xi coming to the left with re-
spect to the variables ∂i and should not be confused with
the : :ϕ used before. The solution (42) also satisfies the
equation

∂T

∂∂n
= iaxk∂k(γ2(A)−γ1(A))T , (43)

stemming from the condition

T (xn
ϕ1f(x)) = T (xn)
ϕ2T (f(x)) . (44)

Using (A.5) from Appendix A, we can easily find the in-
verse of (42), which reads

T−1 = : e
xi∂i

(
ϕ1(A)
ϕ2(A)

−1

)

: . (45)

If we introduce the notation T1,2 ≡ T = : e
xi∂i

(
ϕ1(A)
ϕ2(A)

−1
)
:,

we can summarize the properties of the T -operator as fol-
lows:
1. inverse operator,

T−11,2 = T2,1 , (46)

2. transitivity,

T1,2T2,3 = T1,3 . (47)

Finally, using (A.17) in Appendix A, we can write the
T -operator, (42), as

T = e
xi∂i ln

ϕ2
ϕ1 . (48)

It is important to note that we can represent x̂ in terms of
the two representations ϕ1(A) and ϕ2(A) as

x̂i = (x1)iϕ1(A) = (x2)iϕ2(A) ,

x̂n = (x1)n+ ia(x1)k(∂1)kγ1(A)

= (x2)n+ ia(x2)k(∂2)kγ2(A) , (49)

where for the transformation of the coordinates we have

(x2)i = T
−1(x1)iT = (x1)i

ϕ1(A)

ϕ2(A)
, (50)

(x2)n = T
−1(x1)nT

= (x1)n+ ia(x1)k(∂1)k(γ1(A)−γ2(A)) . (51)

Similarly, for the transformation of the derivatives, it fol-
lows

(∂2)i = T
−1(∂1)iT = (∂1)i

ϕ2(A)

ϕ1(A)
, (52)

(∂2)n = T
−1(∂1)nT = (∂1)n . (53)

Generally, one can introduce a mapping Kϕ1ϕ2 : R
n→ Rn,

transforming vector ∂ϕ1 into vector ∂ϕ2 ,

∂ϕ2 = T
−1∂ϕ1T =K

ϕ1
ϕ2
(∂ϕ1) . (54)

Because of the transitivity property of the T -operator, the
composition of theK functions satisfies the relation

Kϕ1ϕ2K
ϕ2
ϕ3
=Kϕ1ϕ3 . (55)

3 Derivation of the star product
corresponding to the arbitrary ordering
prescription/mapping

We now proceed in some detail to find the star product for
κ-deformed space, corresponding to the particular order-
ing : :ϕ. It can be deduced from the defining relation (36),
starting from the expression for the left star product, which
is known from the literature as

f(x)
Lg(x) = limy→x
z→x

exi∂
y
i (e
−ia∂zn−1)f(y)g(z)

= lim
y→x
e−iaxi∂

x
i ∂
y
nf(x)g(y) . (56)

Thus, from T (f(x)
Lg(x)) = T (f(x))
ϕT (g(x)), it follows
that

(f̃
ϕg̃)(x) = T
(
T−1f̃
LT

−1g̃
)
, (57)

where f̃ = Tf is introduced. For simplicity, in due course,
we drop the symbol∼ from the functions and by using (42),
(45) and (56), we arrive at

(f
ϕg)(x) = lim
w→x

exj∂
w
j (ϕ(Aw)e

Aw−1) lim
z→w
y→w

ewj∂
z
j (e

−Ay−1)

× lim
u→z
e
zj∂
u
j

(
e−Au
ϕ(Au)

−1
)

× lim
t→y
e
yj∂
t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t) , (58)

with the abbreviationAx = ia
∂
∂xn
, etc. The second and the

third term in (58) can be contracted with the help of (A.5)
to yield

(f
ϕg)(x) = lim
w→x

exj∂
w
j (ϕ(Aw)e

Aw−1) : ezj∂
z
j (e

−Ay−1) :

× : e
zj∂
z
j

(
e−Au
ϕ(Au)

−1
)
: lim
t→y
e
yj∂
t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t)

= lim
w→x

exj∂
w
j (ϕ(Aw)e

Aw−1) : e
N
(
e−Ay e

−Au
ϕ(Au)

−1
)
:

× lim
t→y
e
yj∂
t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t) (59)

= lim
w→x

exj∂
w
j (ϕ(Aw)e

Aw−1)

× lim
u→w
y→w

e
wj∂

u
j

(
e−Ay e

−Au
ϕ(Au)

−1
)

× lim
t→y
e
yj∂
t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t) . (60)
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If the obvious relation ϕ(Aw) limt→y f(t) =
limt→y ϕ(At)f(t) and the similar one (B.1) derived in Ap-
pendix B are applied to the second and the third factor
in (60), we get

(f
ϕg)(x)

= lim
w→x

exj∂
w
j (ϕ(Aw)e

Aw−1) lim
u→w
t→w

e
wj∂

u
j

(
e−At e

−Au
ϕ(Au)

−1
)

× e
wj∂

t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t)

= lim
w→x

lim
u→w
t→w

exj(∂
u
j +∂

t
j )(ϕ(Au+At)e

Au+At−1)

× e
wj∂

u
j

(
e−At e

−Au
ϕ(Au)

−1
)
e
wj∂

t
j

(
e−At
ϕ(At)

−1
)
f(u)g(t). (61)

Here we can again use the equivalent representation of the
factors in (61) through the normal ordering (not to be con-
fused with : :ϕ) and apply (A.5) to obtain

(f
ϕg)(x)

=

(
lim
u→x
t→x

exj∂
u
j (ϕ(Au+At)e

Au+At−1)e
xj∂

u
j (e

−At e
−Au
ϕ(Au)

−1
))

×

(
lim
u→x
t→x

exj∂
t
j (ϕ(Au+At)e

Au+At−1)e
xj∂

t
j

(
e−At
ϕ(At)

−1
))

×f(u)g(t)

=
(
: eN(ϕ(Au+At)e

Au+At−1) : : e
N
(
e−At e

−Au
ϕ(Au)

−1
)
:
)

×
(
: eN(ϕ(Au+At)e

Au+At−1) : : e
N
(
e−At
ϕ(At)

−1
)
:
)
f(u)g(t)

= : e
N
(
ϕ(Au+At)e

Au+Ate−At e
−Au
ϕ(Au)

−1
)
:

× : e
N
(
ϕ(Au+At)e

Au+At e
−At
ϕ(At)

−1
)
: f(u)g(t)

= : e
N
(
ϕ(Au+At)
ϕ(Au)

−1
)
: : e
N
(
ϕ(Au+At)
ϕ(At)

eAu−1
)
: f(u)g(t)

= lim
u→x
e
xj∂

u
j

(
ϕ(Au+At)
ϕ(Au)

−1
)

× lim
t→x
e
xj∂

t
j

(
ϕ(Au+At)
ϕ(At)

eAu−1
)
f(u)g(t) . (62)

Since the factors in (62) commute, we finally obtain the
star product in the ϕ realization (i.e. in the ϕ ordering)

(f
ϕg)(x)

= lim
u→x
t→x

e
xj∂

u
j

(
ϕ(Au+At)
ϕ(Au)

−1
)
+xj∂

t
j

(
ϕ(Au+At)
ϕ(At)

eAu−1
)
f(u)g(t) .

(63)

It should be noted that the coproduct stemming from this
result for the star product completely coincides with (32)
and the coproduct (18). We stress here that the result (63)
is a special case of the more general one

(f 
 g)(x) = lim
u→x
y→x

µ(exα(�−�0)∂αf(u)⊗ g(y)) , (64)

where�0(∂µ) = ∂µ⊗1+1⊗∂µ,�(∂µ) is given in (18), and
µ is the multiplication map in the Hopf algebra, namely,

µ(f(x)⊗ g(x)) = f(x)g(x). Equation (64) can be extended
to hold for a general Lie algebra. To end this section, note
that generally, in view of (31) and (35), the star product

ϕ satisfies the relation e

ik·x
ϕe
iq·x = ei(k⊕q)·x, with k⊕ q

defined in (32).

4 Towards the scalar field theory
on κ-deformed space

4.1 κ-deformed Minkowski space
and the natural realization

All results obtained so far are derived for the case of
the Euclidean metric. They can be easily extended to
Minkowski space. One needs only deal with the change in
the definition of the momentum

P0 = i∂0 , Pi =−i∂i , i= 1, 2, . . . , N −1 , (65)

in order to satisfy

[Pµ, xν ] =−iηµν , µ, ν = 0, 1, . . . , N −1 , (66)

ηµν = diag(−1,+1,+1,+1), while the algebra of the vari-
ables xµ, ∂ν remains unaltered,

[∂µ, xν ] = δµν , µ, ν = 0, 1, . . . , N −1 . (67)

Accordingly, the commutation relation describing κ-de-
formed Minkowski space is cast into

[x̂i, x̂j ] = 0 , [x̂0, x̂i] = iax̂i , i, j = 1, 2, . . . , N −1 .
(68)

The star product (63) on κ-deformedMinkowski space also
remains unchanged, except that Ax now stands for Ax =
ia∂x0 . It is important to stress that the deformation param-
eter a appearing in the above commutation relation is not
the same as the one we were dealing with when we con-
sidered the Euclidean space. They are related by an = ia0,
where an is the old deformation parameter and a0 is the
new one. For simplicity, we remove the index 0 of it, but
in all subsequent considerations one should keep in mind
that it is the time component of the n-vector in Minkowski
space and that it is real. The interchange an = ia0, together
with the whole set of relations xn = ix0, Dn =−iD0 and
Min = −iMi0 provides the consistent transition from Eu-
clidean to Minkowski space.
Among all mappings that realize κ-deformedMinkowski

space, there is one of special significance because, unlike
the general mapping (4), it is covariant. It has some in-
teresting properties and is introduced in a natural way by
identifying the Dirac covariant derivative with the ordi-
nary derivative Dµ ≡ ∂µ. This special kind of realization
has already been introduced at the end of Sect. 2.2 through
the mapping (19) to which we have assigned the term nat-
ural realization. Since we are interested in this kind of
realization with respect to the deformed Heisenberg alge-
bra (15), according to (15), we have

[∂µ, x̂
Nat
ν ] = δµν

(
− ia∂0+

√
1+a2∂2

)
+ iaδµ0∂ν , (69)
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yielding the following realization of the noncommuting
coordinates:

x̂Natµ = xµ
(
− ia∂0+

√
1+a2∂2

)
+ iax0∂µ . (70)

Thus, in the following (70) will be referred to as a nat-
ural realization and it will be understood that it is natu-
ral with respect to the deformed Heisenberg algebra (15).
We recall that (15) is fixed since it is a part of the ex-
tended Lorentz algebra (see Sect. 2.1). Note that the map-
ping (70) is not incorporated in the set of realizations (4).
The properties of the natural realization are expressed
in a most convenient way if the Dirac covariant deriva-
tive (13) is associated with the momentum Pϕµ on κ-
deformed Minkowski space,

Pϕi =−iDi =−i∂i
e−A

ϕ(A)
= ki

e−ak0

ϕ(ak0)
,

Pϕ0 = iD0 = i∂0
sinhA

A
+a∆

e−A

2ϕ2

=
1

a
sinh(ak0)−ak

2 e
−ak0

2ϕ2
, (71)

where k0 = i∂0, ki =−i∂i. This association can be regarded
as a map between the algebra of fields on noncommuta-
tive κ-Minkowski space and the algebra of ordinary fields
on Minkowski spacetime equipped with a star product [34,
35]. The special case when ϕ= 1, which is the case of right
ordering, was considered in [42]. Since the map (71) is fully
specified by its action on plane waves, it can be looked on
as if it mapped ordinary Minkowski plane waves eikαx

α
to

plane waves : eiPα(k)x̂
α
:ϕ on κ-deformed Minkowski space,

P : k �→ P (k), with P (k) given by (71).
The natural realization has the property

eik
αx̂Natα |0〉= eiP

S
α(k)x

α
, (72)

where P Sα is the momentum (71) evaluated for ϕ= ϕS, i.e.
corresponding to symmetric ordering. From this and (71) it
is easy to calculate the following expression:

: eik
αx̂Natα :ϕ |0〉= e

i
(
−k0x̂

Nat
0 +kix̂

Nat
i

ϕS(ak0)

ϕ(ak0)

)
|0〉

≡ eiK
α
ϕ(k)x̂

Nat
α |0〉= eiP

ϕ,α(k)xα , (73)

with Kϕ(k) =
(
k0, ki

ϕS(ak0)
ϕ(ak0)

)
and Pϕα given in (71). The

function Kϕ(k) is an example of the map introduced
in (54).

4.2 Free scalar field theory
on κ-deformed Minkowski space

The natural realization appears as a particularly conve-
nient one for constructing the field theory on noncommu-
tative space. The reason for this is that it enables one to re-
cast the action belonging to an algebra of functions whose
product is a noncommutative star product into the action
expressed entirely in terms of usual pointwise multiplica-
tion between two functions. We shall see that although

the construction that is to be made requires one particular
noncommutative star product on an algebra of functions,
namely the one which is related to the natural realization,
the realization of the NC space alone is not important at
all. In other words, the realizations of 4-momenta and co-
ordinates on NC space are not important in constructing
the noncommutative field theory action. The final result,
obtained from the original action by virtue of the proper-
ties of natural star product 
N, will be cast into the form
of the nonlocal, relativistically invariant field theory whose
action is expressed in terms of the usual pointwise multi-
plication of fields and has a particularly simple form. This
result is the same regardless of the particular realization
used to represent 4-momenta and coordinates onNC space.
So far we have seen that each realization of NC space

was related to some specific type of the ordering prescrip-
tion. The same situation as well appears to be true in the
case of the natural realization. As was the case with the
realizations (4), where the corresponding orderings are ex-
pressed in terms of the exponentials of the type

: eik
αx̂α :ϕ= e

−ik0x̂0+ikix̂i
ϕS(ak0)

ϕ(ak0) (74)

(equation (74) is the same as (27), the difference being
only in the signature adjusted to hold for the Minkowski
space), the similar connection can be found for the natural
realization either. In fact, it can immediately be deduced
from (72) by rearranging it that one may obtain

ei(P
S)
−1
(k)·x̂Nat |0〉= eik·x . (75)

In order to specify the function (P S)
−1
, appearing in (75),

we once again write the relations (71),

Pϕi = ki
e−ak0

ϕ(ak0)
,

Pϕ0 =
1

a
sinh(ak0)−ak

2 e
−ak0

2ϕ2(ak0)
. (76)

By inverting them for the case when ϕ= ϕS, we obtain the
required quantity (P S)

−1
in components:

(P S)
−1

0 (P ) =
1

a
ln
aP0+

√
1−a2P 2

1−a2P2
,

(P S)
−1

i (P ) = PiϕS

(
ln
aP0+

√
1−a2P 2

1−a2P2

)

×
aP0+

√
1−a2P 2

1−a2P2
. (77)

Equation (75), together with (77), defines the ordering pre-
scription corresponding to the natural realization.
We now turn to the notion of the star product corres-

ponding to the natural realization. This star product, for
which we adopt the designation 
N, is characterized by the
property

eiP
ϕ(k)·x 
N e

iPϕ(q)·x = eiP
ϕ(k⊕q)·x , (78)
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where

k⊕ q =

(
k0+ q0, ki

ϕ(ak0+aq0)

ϕ(ak0)
+ qi
ϕ(ak0+aq0)

ϕ(aq0)
eak0
)

(79)

is the generalized rule for the addition of momenta and Pϕ

is defined in (71). It is understood that the quantity k⊕ q
is taken in the ϕ realization, although it is not specifically
indicated. Equation (78) will have a crucial role to play in
our construction of noncommutative field theory. From the
definition of the inverse 4-momentum k⊕k−1 = (0,0), if
k = (k0,k), then we have

k−1 =

(
−k0,−ki

ϕ(−ak0)

ϕ(ak0)
e−ak0

)
, (80)

k−1⊕ q =
(
−k0+ q0,

(
−

ki

ϕ(ak0)
+

qi

ϕ(aq0)

)
ϕ(−ak0+aq0)e

−ak0

)
.

(81)

In the calculations that follow, we adopt the Hermitian
conjugation property

(eiP
ϕ(k)·x)† = eiP

ϕ(k−1)·x . (82)

Let us now derive (78), which encloses the property of
natural star product important for our construction. Uti-
lizing (31) and (73), we have

eiP
ϕ(k)·x 
N e

iPϕ(q)·x = : eik·x̂
Nat
:ϕ: e

iq·x̂Nat :ϕ |0〉

= : ei(k⊕q)·x̂
Nat
:ϕ |0〉

= eiP
ϕ(k⊕q)·x , (83)

thus completing the proof of (78). In the second line of the
derivation (83), we have applied (73), while in the third
line we have used the property (31) satisfied by the gen-
eralized addition of momenta (adjusted for the Minkowski
signature). Finally, in the last line, (73) is used again, but
in a reverse direction.
The result (78) can be further used to derive the iden-

tity
∫
dnxφ†(x)
Nψ(x) =

∫
dnxφ∗(x)

√
1+a2∂µ∂µψ(x) ,

(84)

which provides the transition from the integration of the
star product of two fields to the integration of the or-
dinary product of fields. To prove it, it is sufficient to
show that it holds for the plane waves φ(x) = eiP

ϕ(k)·x and
ψ(x) = eiP

ϕ(q)·x. Thus, from (78) and (82) we have
∫
dnx(eiP

ϕ(k)·x)† 
N e
iPϕ(q)·x

=

∫
dnxeiP

ϕ(k−1⊕q)·x

= (2π)nδ
(
Pϕ0 (k

−1⊕ q)
)
δ(n−1)(Pϕ(k−1⊕ q)) .

(85)

In order to perform the calculations on the right-hand side
of (85), it is convenient to introduce the quantities

Pϕn (k) =−
1

a
cosh(ak0)+ak

2 e
−ak0

2ϕ2(ak0)
,

Pϕ± = P
ϕ
n ±P

ϕ
0 (86)

(the first quantity in (86) should not be confused with the
Euclidean counterpart Pn = iP0 of P0). It is now straight-
forward to obtain the following expressions:

Pϕi (k
−1⊕ q) =

(
qi

ϕ(aq0)
−

ki

ϕ(ak0)

)
e−aq0 ,

Pϕ0 (k
−1⊕ q) =

1

a
sinh(aq0−ak0)

−
a

2

(
q

ϕ(aq0)
−

k

ϕ(ak0)

)2
e−ak0−aq0 ,

Pϕ+(k) =−
1

a
e−ak0 . (87)

When they are combined with (76), we get

Pϕi (k
−1⊕ q) =

Pϕ+(k)P
ϕ
i (q)−P

ϕ
i (k)P

ϕ
+(q)

Pϕ+(k)
,

Pϕ0 (k
−1⊕ q) =−a

[
Pϕ+(k)P

ϕ
0 (q)−P

ϕ
0 (k)P

ϕ
+(q)

−Pϕi (k)P
ϕ
i (k

−1⊕ q)
]
. (88)

Since (85) vanishes for Pϕ(k−1⊕ q) 
= 0, the last term of
Pϕ0 (k

−1⊕ q) in (88) drops out and we are left with

Pϕ+(k)P
ϕ
0 (q)−P

ϕ
0 (k)P

ϕ
+(q)

=
1

2a2Pϕ+(k)P
ϕ
+(q)

[
Pϕ+(q)

2
−Pϕ+(k)

2
+a2(Pϕ+(k)P

ϕ(q))
2

−a2(Pϕ+(q)P
ϕ(k))

2]
, (89)

where use has been made of the identity 2Pϕ0 = P
ϕ
+ −

1
a2P

ϕ
+
+
Pϕ
2

P
ϕ
+
. From the same argument as before, the last

two terms in (89) cancel each other, leaving us with

(2π)nδ(n)(Pϕ(k−1⊕ q))

= (2π)
n
δ

(
−a
Pϕ+(q)

2
−Pϕ+(k)

2

2a2Pϕ+(k)P
ϕ
+ (q)

)

× δ(n−1)
(
Pϕ(q)−

Pϕ+(q)

Pϕ+(k)
Pϕ(k)

)

= (2π)
n δ

(
Pϕ+(k)−P

ϕ
+(q)
)

∣
∣
∣−

P
ϕ
+(k)

2
+P

ϕ
+(q)

2

2a2P
ϕ
+(q)P

ϕ
+ (k)

2 (−a)
∣
∣
∣
P
ϕ
+(k)=P

ϕ
+ (q)

× δ(n−1)
(
Pϕ(q)−

Pϕ+(q)

Pϕ+(k)
Pϕ(k)

)

= (2π)naPϕ+(q)δ
(
Pϕ+(k)−P

ϕ
+(q)
)

× δ(n−1)
(
Pϕ(q)−Pϕ(k)

)
. (90)

Here, in calculating the above expression, one zero of the
function in the argument has been rejected due to the re-
quirement that Pϕ+ < 0. This condition is obvious from the
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form of Pϕ+ in (87). Since the final goal is to express the
result in terms of Pϕ0 and P

ϕ, we perform the following
computation

δ
(
Pϕ0 (q)−P

ϕ
0 (k)

)

= δ

(
1

2
Pϕ+(q)−

1

2a2Pϕ+(q)
+
Pϕ(q)

2

2Pϕ+(q)

−
1

2
Pϕ+(k)+

1

2a2Pϕ+(k)
−
Pϕ(k)

2

2Pϕ+(k)

)

=
δ
(
Pϕ+(k)−P

ϕ
+(q)
)

∣
∣
∣− 12 −

1

2a2P
ϕ
+(k)

2 +
Pϕ(k)2

2P
ϕ
+(k)

2

∣
∣
∣
P
ϕ
+(k)=P

ϕ
+(q)

=

∣
∣Pϕ+(q)

∣
∣

∣
∣Pϕn (q)

∣
∣ δ
(
Pϕ+(k)−P

ϕ
+(q)
)
, (91)

where use has beenmade of the relationPϕn (k) =
1
2P
ϕ
+(k)+

1
2a2Pϕ+(k)

− P
ϕ(k)2

2Pϕ+(k)
. Inserting (91) in (90), we get

(2π)
n
δ(n)(Pϕ(k−1⊕ q))

= (2π)
n
a
∣
∣Pϕn (q)

∣
∣δ
(
Pϕ0 (q)−P

ϕ
0 (k)

)
δ(n−1)(Pϕ(q)−Pϕ(k))

(92)

and it can be recognized as

(2π)
n
a
∣
∣Pϕn (q)

∣
∣δ
(
Pϕ0 (q)−P

ϕ
0 (k)

)
δ(n−1)(Pϕ(q)−Pϕ(k))

= a

∫
dnx(eiP

ϕ(k)·x)∗
∣
∣Pϕn (q)

∣
∣eiP

ϕ(q)·x . (93)

Finally, the result we have obtained is

∫
dnx(eiP

ϕ(k)·x)† 
N e
iPϕ(q)·x

=

∫
dnx(eiP

ϕ(k)·x)∗
√
1+a2∂µ∂µe

iPϕ(q)·x . (94)

In the last step, we have utilized the identity a|Pϕn | =√
1−a2Pϕ2 =

√
1+a2DµDµ and the fact that we are

working in the natural realization where Dµ ≡ ∂µ. This
proves (84), which is a generalization of the integral iden-
tity found in [42]. Here it was proved by starting from the
general ordering prescription characterized by the function
ϕ, in contrast to [42] where the same relation is obtained
by starting from some particular ordering prescription,
namely, the right one.
We can now look upon the action for a free massive

scalar field on noncommutative κ-deformed Minkowski
space

S =

∫
d4x

[
1

2
(∂µφ)

† 
N (∂
µφ)(x)+

m2

2
φ† 
N φ(x)

]
. (95)

The construction of this action is based on the star prod-
uct corresponding to the natural realization. At this place
we point out that the action (95) is κ-Poincaré invariant.
Namely, in the natural realization, where Dµ = ∂µ, the
Dirac derivative Dµ is a vector under Lorentz algebra and

the coproduct�N(Dµ) transforms in a covariant way [35].
This coproduct (for the Euclidean case) is given by

�N(Dµ) =Dµ⊗Z
−1+1⊗Dµ+ iaµDλZ⊗Dλ

−
iaµ
2
�Z⊗ (iaλDλ) , (96)

where

Z−1 =−iaλDλ+
√
1+a2DλDλ . (97)

The last equation represents an invariant shift opera-
tor [35]. From the expressions (see (64))

(f 
N g)(u) = µ(e
uα(�N−�0)∂α(f ⊗ g)(x))

∣
∣
x=u

and

eik·x 
N e
iq·x = ei�N(k,q)·x ,

we conclude that the 
N product in natural realization
(where Dµ = ∂µ) is noncommutative, nonlocal, but κ-
Poincaré invariant. Hence, the star product 
N of two
scalar fields is scalar with respect to κ-Poincaré symmetry.
Similarly, from the same argument, the term Dµφ
ND

µφ
is also invariant under the action of κ-Poincaré symmetry.
As a consequence of these consideration, we conclude that
the action (95) is invariant under the Poincaré algebra (see
also (84)) and κ-Poincaré symmetry.
A few comments are in order regarding (95). Consid-

ering the action (95) or (94) obtained by splitting (95) to
Fourier components, we see that the construction of the
action can be basically taken along two different routes.
The first one keeps the realizations of 4-momenta appear-
ing in (94) fixed, while simultaneously changing the order-
ing prescription that the star product should be associated
to. The second route is based on choosing the convenient
ordering prescription with its accompanying star product
and keeping it fixed, while simultaneously changing the
realizations of 4-momenta appearing in the exponentials
of (94) and used to define κ-Minkowski space. Here we
adopt the second approach, where we choose the star prod-
uct corresponding to natural realization and keep it fixed.
This realization of the deformed space has special prop-
erties that enable us to cast the theory described by the
action (95) in a form which is easier to handle and which is
closer in form to theories we know how to deal with. With
the help of the identity (84) relating the integration of the
star product of fields to the integration of the standard
pointwise product of fields, the action (95) can be cast in
the form

S =

∫
d4x

[
1

2
(∂µφ)

∗
√
1+a2∂µ∂µ(∂

µφ)(x)

+
m2

2
φ∗
√
1+a2∂µ∂µφ(x)

]
. (98)

This shows that the free scalar field theory on κ-deformed
Minkowski space is equivalent to a nonlocal, relativisti-
cally invariant free scalar field theory on Minkowski space-
time. Also, we see that once the ordering prescription to-
gether with its noncommutative star product is chosen
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and fixed, the resulting action (98) is the same, indepen-
dent of the “gauge” function ϕ, regardless of the realiza-
tion of 4-momenta in the corresponding NC space. Al-
though the theory, through the square root, has higher
derivatives, thus being nonlocal, it entails no significant
physical effects as long as the interaction is not included.
Particularly, we expect that there will be no new poles
leading to the problems with unitarity. However, at the
quantum level one would come up to the necessity for
a change in statistics, causing the situation to be more
complex.
It is worth mentioning that the κ-type of the space de-

formation can also be approached on the basis of an alter-
native general treatment [64] of twists with the star prod-
ucts. This includes the investigation of the particular type
of the map, deforming the commutative subalgebra into
a noncommutative one. The deformation map of this kind
has already been applied [64] to yield the n-dimensional
Moyal plane, as well as the Manin plane.
At the end, let us make some comments. In the present

paper, we have started from the κ-deformed algebra (3)
and considered its extension to the extended Lorentz al-
gebra where we have included the generators of rotations
and the covariant Dirac derivative Dµ. The requirement
that the Lorentz algebra is undeformed caused the de-
formed Heisenberg algebra (15) to be uniquely deter-
mined. For this deformed Heisenberg algebra there exists
a unique natural realization, specified by the require-
ment Dµ ≡ ∂µ, and given by (19), i.e. (70). There is also
a unique ordering prescription corresponding to this re-
alization. It was referred to as a natural ordering, and
it was specified by (75). We were also found the coprod-
uct and the star product 
N corresponding to the natu-
ral realization. The star product 
N has been shown to
obey (78), which implied the following property of 
N to be
satisfied:

∫
dnxφ†ϕ(x)
Nψϕ(x)

=

∫
dnkφ̃∗(k)

∫
dnqψ̃(q)

∫
dnx(eiP

ϕ(k)·x)† 
N e
iPϕ(q)·x

=

∫
dnkφ̃∗(k)

∫
dnqψ̃(q)

∫
dnx : eik

−1·x̂Nat :ϕ

× : eiq·x̂
Nat
:ϕ |0〉

=

∫
dnxφ∗ϕ(x)χ(∂)ψϕ(x) , (99)

where, according to (84), the function χ is χ(∂) =√
1+a2∂2. In writing the Fourier expansions of the fields φ
and ψ, a particular realization ϕ of NC space was used, but
the final result, i.e. the function χ does not depend on the
realization ϕ. In the steps undertaken in (99) (which are,
in fact, concise summary of the calculations done earlier
in the paper, see particularly (73) and (83) and the con-
sideration after that), we have utilised the following field
expansion

φϕ(x) =

∫
dnxφ̃(k)eiP

ϕ(k)·x .

It is consistent, through (73), with the Fourier expan-
sion (22)

φϕ(x̂) =

∫
dnxφ̃(k) : eik·x̂ :ϕ

and the relation φϕ(x̂
Nat)|0〉= φNatϕ (x) ≡ φϕ(x).

It is important to emphasize that we could equally well
start our consideration from an arbitrary deformed Heisen-
berg algebra,

[Dµ, x̂ν ] = ϕµν(D) , (100)

where ϕµν is some function compatible with the com-
mutation relations (1), and take the same steps as those
performed for the algebra (15). We would also find the
unique natural realization (characterized by Dµ ≡ ∂µ and
the mapping x̂Natµ = xαϕαµ(∂) that has to satisfy the com-
mutation relations (1)) and natural ordering correspond-
ing to the algebra (100). There would also be a coproduct
and a star product 
N that could be associated with (100).
One would find that the specific property of the star prod-
uct 
N, corresponding to (100), is also enclosed in the iden-
tity (99), except for the fact that the function χ now has
a form appropriate to the case in consideration.
The advantage of our approach is in a simple construc-

tion of the κ-Poincaré action using the notion of a natu-
ral realization. This route of consideration has an advan-
tage that it provides a direct way for constructing any
κ-Poincaré invariant action. The Dirac derivativeDµ, (13),
transforms as a vector and the right-hand sides of the com-
mutation relations (9), (10) and (15) have covariant form.
Hence, the coproducts �(Dµ) and �(Mµν) have also co-
variant forms under κ-Poincaré symmetry. Thus we have
that starting with generators of undeformed Poincaré al-
gebra, the right-hand sides of (9), (10) and (15) and the
corresponding coproducts�(Dµ) and �(Mµν) are covari-
ant under the twisted Poincaré symmetry.
In [29, 36, 37] the symmetric realization corresponding

to symmetric Weyl ordering was used, but therein �(Dµ)
and�(Mµν) are given by (11) and (13) with ϕ(A) =

A
eA−1

,
whereas in our approach, which uses the notion of nat-
ural realization, Dµ and Mµν have particularly simple
form [35], namelyDµ = ∂µ andMµν = xµ∂ν−xν∂µ. Hence,
both realizations are covariant and equivalent. In anal-
ogy with the gauge theory they correspond to different
covariant gauge conditions. Finally, in contrast to [29, 37],
where the deformed Klein–Gordon operator has the form
�+m2 = 2

a2
(1−
√
1−a2D2)+m2, we take the simplest

possibility for the Klein–Gordon operator by choosing
�+m2 =D2+m2. The physical consequences of this ap-
proach are still under investigation and will be reported in
the near future.

5 Conclusion

We have constructed a κ-deformed noncommutative space-
time of the Lie algebra-type with undeformed extended
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Lorentz algebra and deformed coalgebra by realizing non-
commutative coordinates, generalized derivatives and gen-
eralized rotation generators in terms of the commuta-
tive coordinates and their derivatives. The coproducts
of the generalized rotation generators and of the Dirac
derivatives, respectively, have been identified. A unique
correspondence between the particular realization of κ-
deformed space-time and the corresponding ordering pre-
scription has been found. For fixed deformed Heisenberg
algebra (15) all these realizations of κ-deformedMinkowski
space are of equal importance, none of the realizations
is preferable to the others, implying that physical re-
sults do not depend on the particular realization cho-
sen. Accordingly, the choice of the ordering prescription
or the choice of a particular realization is analogous to
the situation in gauge theory where a particular gauge
is chosen. We have found the expression for the star
product on κ-Minkowski space corresponding to an ar-
bitrary “gauge” function ϕ defining the realization. This
result is related to the important relation between a co-
product and a star product in terms of an exponential
map.
Although all realizations are on an equal footing, for

constructing a field theory on κ-deformed Minkowski
space, we have used a particular realization, the natural
realization, which is not contained within the set of re-
alizations parametrized by the “gauge” function ϕ, but
which was shown to have some preferable properties that
have enabled us to reduce the original field theory on
κ-deformed space to the nonlocal, relativistically invari-
ant, scalar field theory on Minkowski space-time. The
result of this reduction has also been shown not to de-
pend on the realization/ordering taken for κ-Minkowski
space. Thus to conclude, there is one particular non-
commutative star product on the algebra of functions,
namely the one that corresponds to the natural realiza-
tion. Once this star product is fixed, the realization of
NC space alone is not important, i.e. changing the real-
izations of 4-momenta and coordinates used to define the
κ-Minkowski space does not influence the final result for
the action. The line of consideration that is followed here
may appear useful in (2+1)-dimensional models of quan-
tum gravity where the corresponding Lie algebra is SU(2)
or SU(1,1), [65, 66]. Another possible route for future inves-
tigations is to consider other noncommutative space-times.
We believe that the line of analysis presented here is ap-
plicable to other noncommutative spacetimes, particularly
those of Lie algebra-type.
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Appendix A: Derivation
of some useful identities I

Here, we shall derive some useful identities that are used
in calculations taking place in Sects. 2 and 3, where
the T -operator and the star product corresponding to
ϕ−realization of κ-noncommutative space were found.
First we prove the following identity:

:Nk : :N l : =

min(k,l)∑

r=0

r!

(
k

r

)(
l

r

)
:Nk+l−r : , (A.1)

where N ≡
∑N−1
i=1 xi∂i is the number operator and the

symbol : : has the usual meaning of normal ordering with
all xi coming to the left with respect to all ∂i. The variables
xi and ∂i satisfy the ordinary Heisenberg algebra

[∂i, xj ] = δij , i, j = 1, . . . , N −1 . (A.2)

The proof of (A.1) will be done by induction. For the
base of induction we have : N : : N := xi∂i+xixj∂i∂j =
:N : + :N2 : and this is exactly what we get from (A.1)
by taking l = k = 1. For the induction step, we assume
that (A.1) holds for some generic l, k and consider the ex-
pression :Nk : :N l+1 :. It can be transformed by using the
identity

:Nk : xi = xi :N
k : +kxi :N

k−1 :

and with the help of this identity we proceed as follows:

:Nk : :N l+1 :

=
N−1∑

i=1

(
xi :N

k : +kxi :N
k−1 :

)
:Nk : ∂i

=
N−1∑

i=1

xi

min(k,l)∑

r=0

r!

(
k

r

)(
l

r

)
:Nk+l−r : ∂i

+k
N−1∑

i=1

xi

min(k−1,l)∑

r=0

r!

(
k−1

r

)(
l

r

)
:Nk+l−r−1 : ∂i

=

min(k,l)∑

r=0

r!

(
k

r

)(
l

r

)
:Nk+l+l−r :

+k

min(k−1,l)∑

r=0

r!

(
k−1

r

)(
l

r

)
:Nk+l−r : . (A.3)

If we take k < l and change the summation index, after re-
arranging the sums, we get

k∑

r=0

r!

(
k

r

)(
l

r

)
:Nk+l+l−r :

+
k∑

r=1

k(r−1)!

(
k−1

r−1

)(
l

r−1

)
:Nk+l+1−r :
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= :Nk+l+l : +
k∑

r=1

r!

(
k

r

)[(
l

r

)
+

(
l

r−1

)]
:Nk+l+1−r :

=

min(k,l+1)∑

r=0

r!

(
k

r

)(
l+1

r

)
:Nk+l+1−r : , (A.4)

which is the identity (A.1) for l→ l+1. The analogous pro-
cedure can be carried out for l < k and also for the expres-
sion :Nk+1 : :N l : leading to the same conclusion, which
completes the proof.
With the help of the identity (A.1) we can now prove

the following important relation:

: eNA : : eNB : = : eN(A+B+AB) : , (A.5)

which is the identity for the normally ordered exponentials
andA,B are arbitrary operators commuting with the num-
ber operatorN . We proceed as follows:

: eNA : : eNB :

=
∞∑

l=0

∞∑

k=0

1

l!k!
:N l : :Nk :AlBk

=
∞∑

l=0

∞∑

k=0

1

l!k!

min(k,l)∑

r=0

r!

(
l

r

)(
k

r

)
:N l+k−r :AlBk

=
∞∑

s=0

s∑

k=0

min(k,s−k)∑

r=0

1

(s−k− r)!

1

r!(k− r)!
:Ns−r : As−kBk ,

(A.6)

where in the last line we have skipped to the new sum-
mation variable s= k+ l. To accommodate for the upper
bound of the 3rd sum in the last line of (A.6), we split the
above expression into two parts:

: eNA : : eNB :

=
∞∑

s=0

⎛

⎜
⎝

[
s
2

]
∑

k=0

k∑

r=0

1

(s−k− r)!

1

r!(k− r)!
:Ns−r :As−kBk

+
s∑

k=
[
s
2

]
+1

s−k∑

r=0

1

(s−k− r)!

1

r!(k− r)!
:Ns−r :As−kBk

⎞

⎟
⎠

=
∞∑

s=0

⎛

⎜
⎝

[
s
2

]
∑

r=0

[
s
2

]
∑

k=r

1

(s−k− r)!

1

r!(k− r)!
:Ns−r : As−kBk

+

s−
[
s
2

]
−1∑

r=0

s−r∑

k=
[
s
2

]
+1

1

(s−k− r)!

1

r!(k− r)!
:Ns−r : As−kBk

⎞

⎟
⎠

=
∞∑

s=0

[
s
2

]
∑

r=0

s−r∑

k=r

1

(s−k− r)!

1

r!(k− r)!
:Ns−r :As−kBk ,

(A.7)

with the symbol [ ] denoting the lowest integer. Under the
agreement that the terms with negative integers in facto-
rials drop out, the region of summation in (A.7) can be
extended to include s as the upper bound in the last two
sums of (A.7). Expression (A.7) now becomes

∞∑

s=0

s∑

r=0

s∑

k=r

1

(s−k− r)!

1

r!(k− r)!
:Ns−r :As−kBk

=
∞∑

m=0

:Nm :

m!

∞∑

r=0

m+r∑

k=r

1

(m−k)!

m!

r!(k− r)!
Am+r−kBk

=
∞∑

m=0

:Nm :

m!

∞∑

r=0

m∑

a=0

1

(m− r−a)!

m!

r!a!
Am−r−aBa(AB)

r
.

(A.8)

Here, in the first step we have made the change of the sum-
mation variable as s= r+m and then, in the second step
(the second line of (A.8)) we skip to the summation vari-
able a = k− r. Note that in (A.8) it is understood that
the terms with factorials whose arguments are negative
drop out. Making use of this fact, the upper bound of the
r-summation in (A.8) can be reduced to m (for r >m, the
corresponding terms drop out anyway), which finally gives

: eNA : : eNB :

=
∞∑

m=0

:Nm :

m!

m∑

r=0

m∑

a=0

m!

(m− r−a)!r!a!
Am−r−aBa(AB)

r

=
∞∑

m=0

:Nm :

m!
(A+B+AB)m

= : eN(A+B+AB) : , (A.9)

where, in the transition between the first and the second
line, we have utilized the multinomial expansion

(a+ b+ c)n =
n∑

n1=0

n∑

n2=0
n1+n2+n3=n

n∑

n3=0

n!

n1!n2!n3!
an1bn2cn3 .

(A.10)

Finally, it remains to prove the relation

Nk =
k∑

l=0

l∑

p=0

(−1)l−ppk

p!(l−p)!
:N l :≡

k∑

l=0

cl,k :N
l : . (A.11)

It can be again done by induction. From (A.11) we see that
the coefficients cl,k are defined as

cl,k =
l∑

p=0

(−1)l−ppk

p!(l−p)!
. (A.12)

While the base of the induction is trivial, for the step of
induction we have

Nk+1 =N ·Nk =
k∑

l=0

cl,k :N : :N
l :

=
k∑

l=0

cl,k[:N
l+1 : +l :N l :] , (A.13)
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where use has been made of the identity (A.1). In order to
complete the step of induction, (A.13) should be equal to∑k+1
l=0 cl,k+1 :N

l :, which implies that the following recur-
sive relations have to be satisfied:

ck+1,k+1 = ck,k = c0,0 = 1 , c0,k = 0 for k 
= 0 ,

cl,k+1 = cl−1,k+ lcl,k , k > 0 .
(A.14)

The coefficients (A.12) are easily shown to satisfy the re-
cursions (A.14) and this completes the proof of (A.11).
Now, (A.11) can be inverted to obtain

:Nk : = k!

(
N

k

)
. (A.15)

Using the above identity, we have for an arbitrary operator
f , commuting with the number operatorN

: eNf : =
∞∑

k=0

1

k!
:Nk : fk =

∞∑

k=0

(
N

k

)
fk

= (1+f)N = eN ln(1+f) = eNF , (A.16)

where f = eF −1. That is, we have

: eN(e
F−1) : = eNF . (A.17)

Appendix B: Derivation
of some useful identities II

In this section we prove that the relation

ϕ(Aw) limu→w
t→w

f(u)g(t) = lim
u→w
t→w

ϕ(Au+At)f(u)g(t) (B.1)

holds. We begin with

ϕ(Aw) limu→w
t→w

f(u)g(t)

=
∞∑

k=0

1

k!

(
∂kϕ

∂Akw

)

Aw=0

(ia)
k ∂

k

∂wkn
(f(w)g(w))

=
∞∑

k=0

1

k!

(
∂k

∂Akw

)

Aw=0

(ia)
k
k∑

m=0

(
k

m

)
∂mf(w)

∂wmn

∂k−mg(w)

∂wk−mn

=
∞∑

k=0

k∑

m=0

(ia)
k

k!

(
∂kϕ

∂Akw

)

Aw=0

(
k

m

)
∂mf(w)

∂wmn

∂k−mg(w)

∂wk−mn

.

(B.2)

On the other side, we have

lim
u→w
t→w

ϕ(Au+At)f(u)g(t)

= lim
u→w
t→w

∞∑

k=0

1

k!

(
∂kϕ

∂(Au+At)
k

)

Au+At=0

(Au+At)
k
f(u)g(t)

= lim
u→w
t→w

∞∑

k=0

1

k!

(
∂kϕ

∂(Au+At)
k

)

Au+At=0

×
k∑

m=0

(
k

m

)
Amu A

k−m
t f(u)g(t)

=
∞∑

k=0

k∑

m=0

(ia)
k

k!

(
∂kϕ

∂(2Aw)
k

)

2Aw=0

×

(
k

m

)
∂mf(w)

∂wmn

∂k−mg(w)

∂wk−mn

, (B.3)

and this is identical with (B.2), which completes the proof.
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49. S. Meljanac, M. Mileković, S. Pallua, Phys. Lett. B 328, 55
(1994) [hep-th/9404039]
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60. I. Dadić, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149
(2005) [hep-th/0301066]

61. J. Wess, Deformed coordinates spaces, derivatives. Lec-
ture given at the Balkan workshop BW2003, August 2003,
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